MATH 280 Multivariate Calculus Fall 2011
Integration over a curve

Given a curve C in the plane or in space, we can (conceptually) break it into
small pieces each of which has a length ds.T In some cases, we add up these small
contributions to get the total length of the curve. We represent this as

L:/ds.
C

In other cases, we have a length density A defined at each point on the curve and
we add up small contributions of the form A ds to get a total (of some quantity such
as charge or mass). We represent this as

Totalz/)\ds.
C

Our general approach is to start by considering an infinitesimal displacement
dr along the curve. A typical example is shown in the figure on the left below. The
tigure on the right below shows a closer view of dr along with components (relative
to unit vectors 7 and j) denoted dx and dy . In terms of this coordinate system, we
thus have d7 = dx 7+ dy . For a curve in space, we would express an infinitesimal
displacement d7 in terms of components as d7 = dx i+ dyj + dzk. In either case,
the length element ds is the magnitude of the infinitesimal displacement vector.
That is, ds = ||d7||.

Since we are integrating over a one-dimensional object, we will ultimately need
to express ds in terms of one variable. For a given curve in the plane, dx and dy are
related. To determine this relationship, we need to know how x and y are related
along the curve. We can describe a curve analytically in a variety of ways such
as an implicit description (i.e., an equation relating coordinates) or parametrically
(i.e., formulas for the coordinates in terms of some third variable). We illustrate
these for the simple case of a circle of radius R.

We use ds rather than dL for historic reasons. Using dL for this length element would be consistent
with our use of dA for area element and 4V for volume element.



|Example 1 |

A circle of radius R can be described implicitly by the equation x? + y? = R2.
So, we can “d” both sides to get a linear relation between dx and dy:

d(x®> +vy?) = d(R?) which implies  2xdx 4 2ydy = 0.

We can solve this for either dx or dy and then substitute into d7. Here, we choose
to solve for dy to get

dy:—gdx for y # 0.
Substituting into d7, we get

d?:dxf+dyj:dxi—§dyj: (1-27)dx  fory #o.

<R

We can now compute
. x?
ds = ||d7|| = /14 7 |dx|.

To get the length element entirely in terms of one variable, we can solve the equa-
tion of the circle to get y> = R?> — x? and then substitute, giving

. / x?
ds = ||d7|| = {/1+ 2 |dx| for x # £R.

With a bit of algebra, we can rewrite this as

ds = ||d7|| = for x # £R.

—R d
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|Example 2 |

Another way to describe a circle is to think in terms of polar coordinates. We
know that cartesian coordinates and polar coordinates are related by

x =rcosf and y = rsinf.
In polar coordinates, the equation of the circle is 7 = R so we have
x = Rcos6 and y = Rsinf for0 <6 <2m.
We can “d” each of these to get

dx = —Rsin 6 d6 and dy = Rcos 04do.



Substituting into d7, we get
df =dx1+dyj= —Rsin6dfi+ Rcos0dfj = R(—sinfi+ cosb})do.

We can now compute

ds = R\/sin? 6 + cos2 0|df| = Rv/1|d6| = R|d6)|.

For a circle, the relationship between ds and the 460 is much simpler than the
relationship between ds and dx. This should not be a surprise since circles are
natural to describe in polar coordinates. Note that the relationship we get in polar
coordinates is really just the arclength formula: arclength on a circle is the product
of radius and angle subtended.

In the next example, we will put our work above into use in computing a total
from a length density along a curve.

|Examp1e 3 |

Charge is distributed on a semicircle of radius R so that the length charge density is pro-
portional to the distance from the diameter that contains the two ends of the semicircle.
Compute the total charge Q in terms of R and the maximum density A.

We will compute the total charge by adding up small contributions over the
semi-circle. If we let A represent the length charge density, then the small contri-
butions are A ds and the total charge is

Q= Ads.

semi-circle

A picture of the specific situation for this problem is shown below.

We will use polar coordinates as we did in Example 2. So, our description of
the semi-circle is

x = Rcosf and y = Rsinf for0 <6 <.

Using the result from Example 2, we have ds = R|d0)|.
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We must also determine the length charge density A in terms of the variable
6. The length charge density is proportional to the distance d labeled in the plot.
Using trigonometry, we have d = Rsin 6, so

A =kd =kRsinf

for some proportionality constant k. The maximum density A is at the top of the
semi-circle which corresponds to 8 = 71/2. So, we have

. . T . . . . /\0
Ao = kR sm(5> = kR which implies k= R
Thus, the length density A is related to 6 by

A= &Rsin(? = Agsin6.
R
So, we can express the curve integral in terms of a definite integral in the variable
0 as . .
Q= Mds = [ AosingRd6 = Ro [ sin6ds.
0

semi-circle 0

The definite integral is easy to evaluate using the Fundamental Theorem of Calcu-
lus, giving us

7T 7T
0= RAO/ sinfdf = R [— cos 6 ‘0 — RAp(1+1) = 2R,
0

Note that our result Q = 2RA( has the correct units. We can also check that it
is reasonable by comparing to some easy-to-compute quantity. Specifically, for a
semi-circle with a uniform charge density of A at each point, the total charge is
TRAg. Our result of 2RA is less than this which is consistent with having charge
density less than Ag at points other than the top of the semi-circle.




Problems: Integration over a curve

e If you cannot easily evaluate a given integral exactly (because finding an an-
tiderivative is difficult or not possible analytically), you should try getting a
good numerical approximation using technology such as Mathematica or the
fnInt feature on a TI-83/84.

e After computing a length or total quantity, you should check if your result is
reasonable by finding “easy-to-compute” comparisons.

1. Compute the length of the segment of the cubic curve y = x3 for —1 < x < 1.
1

Answer: L= [ V/1+9x% dx ~ 3.0
-1

2. Compute the length of the segment of the sine curve y = sin(x) for 0 < x <
27T.

27
Answer: [ = / V14 cos? xdx ~ 7.640
0

3. A curve in the plane is described parametrically by x = t2,yy = t3 for 0 < t <
2. (You can think of this as describing the path of an object moving in time
with (x,y) = (#?,3) being the position of the object for time ¢.) Compute the
length of the curve.

8(10v/10 — 1)

A L=————=
nswer 57

4. Compute the length of one petal of the polar curve r = cos(30).
/6

Answer: L = / \/1+85in2(30) do ~ 2.227

—1t/6

5. Compute the length of the helix that wraps 5 times around the lateral side of
a right circular cylinder of radius R and height H with a constant pitch (so
each wrap rises the same distance up the cylinder).

Answer: L = 1/ (107R)? + H?

6. Compute the length of the helix that wraps n times around the lateral side of
a right circular cone of radius R and height H with a constant pitch (so each
wrap rises the same distance up the cone). The helix starts at the vertex of
the cone.

1 27tn
Answer: L = — / VH2 + R2 + R262 49
27tn Jo



7. A curve in space is described parametrically by x = t, y = t?, and z = 3 for
0 <t < 2. (You can think of this as describing the path of an object moving
in time with (x,y,z) = (t,2,3) being the position of the object for time ¢.)
Compute the length of the curve.

2
Answer: L = / V14412 +9t4 dt ~ 9.571
0

8. Charge is distributed on a semicircle of radius R so that the length charge
density is proportional to the square of the distance from the diameter that
contains the two ends of the semicircle. Let Ay be the maximum charge den-
sity. Compute the total charge Q.

1
Answer: Q = ENR)LO

9. A piece of wire has the shape of the parabola y = %xz for —a < x < g where
a and b are positive constants (each carrying units of length). The wire has a
non-uniform composition so that the length mass density is proportional to
the square root of the distance from the x-axis reaching a maximum density
Ap. Compute the total mass of the wire.



